Int. J. Heat Mass Transfer. Vol. 9, pp. 165-170.

Pergamon Press 1966, Printed in Great Britain

AN EXTENDED VARIATIONAL METHOD APPLIED TO
POISEUILLE FLOW: TEMPERATURE DEPENDENT VISCOSITY

DONALD F. HAYS
General Motors Research Laboratories Warren, Michigan

(Received 21 December 1964 and in revised form 9 July 1965)

Abstract—The recent work of I. Prigogine and P. Glansdorff has shown that a variational method
can be applied to problems which cannot be described by self-adjoint differential equations. As an
example of the use of this extended variational principle, the problem of slow viscous incompressible
flow through a tube is considered. The wall of the tube is maintained at a uniform temperature, and the
thermal conductivity of the fluid is assumed to be constant. The steady state temperature and velocity
distributions are determined over the tube radius for the particular case where the fluid viscosity is
linearly dependent upon the temperature. Comparisons between the results obtained through numerical
integration of the exact equations and those obtained using the variational approach are favorable over
a range of the viscosity-temperature coefficient.

1. INTRODUCTION

THE EXTENDED variational formulation . was
recently applied to both Couette and Poiseuille
flow by the author [1]. The particular investiga-
tion was for the purpose of acquiring an under-
standing of the accuracy, efficiency, and general
applicability of the methods of Glansdorft et al.
{2], to fluid flow problems exhibiting mechanical
irreversibilities due to viscous forces. In order
to achieve an exact solution as a basis for
comparison for the variational solution, a
simplified but unrealistic form was assumed for
the temperature dependence of the viscosity and
thermal conductivity. The present paper illus-
trates more clearly the very general form which
these terms may assume as a function of tempera-
ture.

For slow, viscous, incompressible flow, the
variational form [2] to be set to zero is
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where no conditions are imposed on the
boundary surface £2 of the fluid volume V.
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In equation (1.1), the temperature T(x;) is
subject to variation, but the temperature distri-
bution T,(x;), which corresponds to the steady
state, is not subject to variation. The viscosity
po and thermal conductivity k, are both func-
tions of the steady state temperature distri-
bution To(x;). The remaining terms include the
components of the fluid velocity v;, the La-
grangian multiplier A, the components of the
stress tensor P;j, a potential « from which an
external force is derived, the fluid density p,
and n;, the unit normal to the boundary surface
2.

The formulation given by equation (1.1) has
been applied to the slow flow of an incom-
pressible fluid through a tube where the viscosity
of the fluid is a linear function of the tempera-
ture. In this illustrative example, the thermal
conductivity k is assumed to be constant. As in
reference 1, comparatively simple forms are
used to represent temperature and velocity
distributions. Two numerical techniques are
used to arrive at solutions from the variational
formulation, and these results are compared with
those obtained from the momentum and energy
equations through numerical integration.

2. NUMERICAL SOLUTION
The flow system is that of Poiseuille flow
through a tube of radius R. Cylindrical co-
ordinates are used, z being parallel to the tube
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axis, r and ¢ being the radial and angular
coordinates. The wall of the tube is at a constant
temperature Ty, and the fluid driving force is a
pressure gradient along the axis of the tube.
Because of symmetry, T = T(r) and u = u(r)
while p = p(z). The momentum and energy
equations are respectively

dp 14d du
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1d dr du\2
0=;a;(rka;)+/t(a‘;). 2.2)

It is assumed that the viscosity variation with
temperature is linear and that the thermal
conductivity is constant, Thus

p=p¥l + B(T — T*], k = constant. (2.3)

In equation (2.3), T* is a reference temperature
which determines a viscosity u* and B is the
viscosity-temperature coefficient. It is convenient
to introduce the following dimensionless
quantities into the momentum and energy
equations:’

r T n*
p:R, 0-—-].,10, a—Twlg, V—*”J(kTw).

2.4

When these quantities are substituted into
equation (2.1), and an integration is performed,
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where
R2 dp
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and ¢ is a constant of integration. Since
dv/dp =0at p=0,C; =0and
dv_ P (2.6)

dp ~ 2{l + o8 — 6%}

In a similar manner, the energy equation (2.2) is
reduced to the form
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The dimensionless reference temperature 8% may
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be arbitrarily chosen. In this instance it was
chosen to be of the following form,
o* — .1.+ 0’1’

2

where 6, is the maximum dimensionless
temperature which occurs at p = 0. By substi-
tuting (2.8) into equations (2.6) and (2.7), they
are then given by the forms

2.8)
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The equations (2.9) and (2.10), with the boundary
conditions

61y =1, 6(0) = 0y, o) =0, (2.11)

are solved for 4 and v through the use of a high
speed digital computer. By assigning values for
the fluid driving force y, the viscosity coefficient
a, and the maximum temperature 8,,, numerical
integration of the two simultaneous differential
equations (2.9) and (2.10) is accomplished using
the Runga-Kutta-Gill technique. An iterative
method is used, successive integrations being
performed until the difference between the
assigned value of @, and the value obtained by
integrating over p is less than some arbitrarily
small assigned quantity «.

3. VARIATIONAL FORMULATION:
SELF-CONSISTENT METHOD
A functional J which reflects the conditions of
the variational form given by equation (1.1},
and which is applicable to the one dimensional
flow system being investigated, is as follows:
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The relationships given by (2.3) and (2.4) aliow
equation (3.1) to be written as
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where y is defined in (2.5). The boundary con-
ditions on the temperature and velocity are

o) =1, 60) = bm:
v(l) =0, V(O) = Vm, (33)

where 8,, and vy, are the maximum values of the
temperature and velocity. It should be noted
that the temperature functions 8, in equation
(3.2) which represent the stationary state are not
to be varied but they must be the same function
of p as the variable § which is to be varied.

Elementary forms for functions of temperature
and velocity which satisfy the conditions of
(3.3) are

0=(0—-pY4 + 1,
o = (1 — pY4, + 1,

where 8, = A + 1 and vy, = B.

Because of the illustrative nature of this
example, only one arbitrary constant has been
incorporated into the functions of (3.4), these
being A and B. Additional constants would give
a greater flexibility to the approximating
functions, but at the cost of increasing the
complexity of the algebra of the problem. The
values of 4 and B which allow the best solution
of the basic equations by the forms of 4 and »
given by (3.4) are determined from the re-
lationships

v=(1 - 9B,
(3.4)

o
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In the self-consistent method, following the

operations of (3.5}, 8, is set equal to 4, i.e.
o = A. Thus,
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Now setting 8, = 6, and using the relationships
given by (2.8) and (3.4), the integration of
equation (3.6) yields the following expression:
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In a similar manner,
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After setting 8, = 6 and integrating, equation
(3.8) reduces to the simple form,

Q

B = i 3.9
This direct proportionality of the maximum
flow velocity to the fluid driving force, B = B(y),
and its independence of viscosity and tempera-
ture effects is a consequence of the assumed
form for u(B, p) and the particular choice of the
reference temperature T*,

The substitution of (3.9) into (3.7) yields the
following equation which must be solved for 4,

y2(1-—a)—64,4—;14j[6414+

‘iﬁ%t 4) _ ,,z] In ('/Tlﬁ) ~0. (3.10)

/

The values of a and y are assigned and the value
of A which satisfies {3.10) is then found through
the use of an interval halving technique with a
digital computer. With 4 and B known, equa-
tions (3.4) are used to obtain the temperature
and velocity distributions,

4. VARIATIONAL FORMULATION:
ITERATION METHOD
It is possible to solve for the coefficients in the
variational formulation by using an iterative
technique rather than the self-consistent method.
The Newton—Raphson method [3] was found to
be adequate for this analysis where the functional
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J is a function of the three coefficients 4, Ao,
and B. This method is applied to the current
analysis in the following manner.

As a consequence of the Ritz—Galerkin
method, the two equations of (3.5) are estab-
lished with the subsidiary conditions that at the
steady state condition 6(p) = 6,(p). Thus, the
following three equations are available:
aoJ
a=F(Ao,A,B)=O 1

oJ 4.1)
3= G(4,,4,B) =0
H=A4,—A4=0
These functions are expanded in a Taylor’s
series and by retaining only the first-order terms,
the following set of equations is obtained:

FAOSAO = F48A4 + FgdB

= _F(A()’ A; B)
G4,840 + G484 + GgdB 4.2)

= —G(Ag, 4, B) |
HADSAO + HASA = —H(Ao, A)

where subscripts on F, G, and H denote differ-
entiation. These equations are now solved for
84,, 64, and 8B.

With an initial estimate of 4,, 4, and B, the
change in these variables 84,, 84, and 8B, is
then determined. Succeeding corrected values
are obtained from the relationships

AGHD = A0 4 84, )
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where n indicates the iteration number. This
iteration process is continued until the difference
between successive iterations is sufficiently small,
ie.until 6( ) < e

5. RESULTS

Numerical solutions were obtained for the
temperature and velocity distribution across the
radius. The numerical solution of the exact
equations (2.9) and (2.10) for the terms &, — 1
and v, which correspond to the variables 4 and
B, yielded values given in Table 1 over a range of
o and Y.

For the self-consistent method, B is given
directly by equation (3.9) and values of 4 which
satisfy equation (3.10) over a range of « and y are
given in Table 2.

The Newton—-Raphson iterative technique
given by equations (3.3) and (3.4) yielded values
of A and B, which differed by at most one figure
in the fifth decimal place with the values obtained
by the self-consistent method.

Curves of temperature and velocity across the
tube radius are shown in Fig. 1 and 2 for a
constant value of y and for two values of a.
It is seen from these curves that the difference
between the results of the variational method
and the exact equations increase with an increase
in a. The discrepancy in the results can be
attributed to the choice of the trial functions
selected to represent the solutions of the differ-
ential equations. A trial function with a greater
number of coefficients would have a greater
flexibility in approximating the true solutions,

At = g4 4 54 4.3) but at the expense of increased an'fllyti.cal com-

plexity. This difference, however, is slight; the

Bl = B} L 3B percentage error in vy, for a y of —3-0 and an

Table 1. Values of 0, — 1 and v, (comparable to A and B of the variational method) obtained by the numerical integration

of the momentum and energy equations

Bm -1 i Vm
L ‘ 0 —05 10 —20 0 -0'5 10 —20
—10 0015625 001566 001569 001575 . 02500 025033  0-25066  0-25133
—2:0 0062500 006300 006351 006460 | 05000 050267  0:50546 051149
30 0140625 014320 014600 015244 | 07500 075928 076963 079444
—40 0250000  0-25841 026826 029492 | 10000  1-02300  1-05116 113320
—50 ‘ 0390625 041210 044028 0-55305 ' 12500 129760 136471  1-67670
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Table 2. Values of A and B (comparable to 0w — 1 and v, of the exact equations) obtained from the variational Jormula-
tion using the self-consistent mathod

I

A } B
T~ 0 —0-5 ~10 ~20 .| o —05 ~10 —20
Y ~.
10 | 0015625 001560 00155 001555 .| 0250 0250 0250 0250
20 | 0062500 006218 006187 006125 | 0-500 0-500 0-500 0-500
—30 | 0140625 013907 013754 013458 | 0750 0750 0750 0-750 -
—40 | 0250000 024526 024069 023000 | 1000 1000 1-000 1-000
—50 | 0390626 037958  0-36910  0-34960 { 1250 1250 1250 1250
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FiG. 1. Dimensionless temperature # and velocity v vs.
tube radius p for both self-consistent method and
numerical solution. « = — 05, v = =30,

a of —2-0 being 5-6 % and for 9y, the error is but
1-5%. Thus, over a reasonable range of the
forcing term y, the variational formulation yields
quite acceptable results with a minimum number
of coefficients, The results of the iteration
technique have not been plotted since they match
so closely the results of the self-consistent
method. In applying the iterative method to the
determination of the coefficients 4 and B, some
care must be taken in choosing the initial values
of these terms. If these values are too far removed

H.M.—M

from steady state values, then the iterative
process may diverge. The range over which
initial values of 4 and B will yield a converging
process is a function of the derivatives J4 and
Jy and is generally not easily determined.
Consequently, some time may be required in
searching for acceptable trial values. However,
once - the converging iterative process was
initiated, convergence was achieved in from four
to sixteen iterations with an ¢ of 10-8,
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Fic. 2. Dimensionless temperature 8 and velocity v vs.
tube radius p for both self-consistent method and
numerical solution. a = —20, v = ~3-0.
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Of greater importance than the actual values
obtained in this problem is the realization that
the variational formulation furnishes a method
by which temperature dependent viscosity and
thermal conductivity can be incorporated easily
into fluid flow analyses. The complexity of the
temperature dependence of these functions does
not limit the use of this technique nor does the
complexity of the assumed temperature and
velocity distributions act as restraints upon its
applicability. With the availability of high-speed
digital computers and a general theory relating
to the determination of a stationary states
through a variational principle [4], approximate
solutions of sufficient accuracy may be obtained
for many of the non-isothermal fluid mechanics

problems which may include such phenomena as
diffusion and chemical reactions.
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Résumé—Le travail récent de I. Prigogine et P. Glansdorff a montré qu’une méthode variationnelle
peut étre appliquée aux problémes qui ne peuvent pas étre décrits par des équations différentielles
auto-adjointes. Comme exemple de I'utilisation de ce principe variationnel généralisé, le probléme d’un
¢écoulement incompressible visqueux lent & travers un tube est considéré. La paroi du tube est maintenue
4 une temérature uniforme, et ’on suppose que la conductivité thermique du fluide est constante. Les
distributions de température et de vitesse en régime permanent sont déterminées le long du rayon du
tube dans le cas particulier o la viscosité du fluide dépend linéairement de la température. Des com-
paraisons entre les résultats obtenus grace a I'intégration numérique des équations exactes et ceux
obtenus en utilisant la méthode variationnelle sont favorables dans une certaine gamme du coefficient
de dépendance de la viscosité en fonction de Ia température.

Zusammenfassung—Die jiingste Arbeit von J. Prigogine und P. Glansdorff hat gezeigt, dass eine
Variationsmethode auf Probleme angewandt werden kann, die von selbst angleichenden Differential-
gleichungen nicht beschrieben werden konnen. Als Anwendungsbeispiel fiir dieses erweiterte
Variationsprinzip wird das Problem der langsamen, zihen, inkompressiblen Stromung durch ein
Rohr betrachtet. Die Rohrwand wird auf gleichmissiger Temperatur gehalten und die Warmeleit-
fihigkeit der Fliissigkeit wird als konstant angenommen. Die Beharrungstemperatur und die
Geschwindigkeitsverteilungen wurden iiber den Rohrradius fiir den besonderen Fall bestimmt, dass
die Zahigkeit linear abhingig von der Temperatur ist. Ein Vergleich der Ergebnisse, die durch
numerische Integration der exakten Gleichungen erhalten wurden, mit den nach der Variations-

niherung errechneten ist

vielversprechend iiber einen Bereich des Zihigkeits-Temperatur-

Koeffizienten.

Annoraumsi—B3 nocsepueit padore N, Ilpurosuna u 11, Fnencropda nokasauno, 4ro sapma-
UMOHHBII METOJ[ MOMKHO IIPUMEHMTbL K 3aa4aM, KOTOPHE Heb3sfd OIMCATH ¢ MOMOILbIO CaMo-
conpsizkenubix guddepeHnuanpHEX ypaBHeHHI. 13 wavecTse Ipumepa HPIMEUEHHS OTOTO
0G06IEHHOTo BAPMAIMOHHOr0 NPMHIAIIA PACCMOTPEHA 3aa4a O MeMJIEHHOM BASKOM HECHII-
MaeMOM TeueHHM MuKocTH B TpyGe. TemmepaTypa CTeHKY IIOAAEPHKMBAETCH IOCTOAHHOIM,
TEIIIONPOBOJHOCTD JKUAKOCTH TaKe NPUHATA MOCTOAHHON. B CTAUMOHAPHOM COCTOAHMU
ONpeMelleHH PACIPeNeleHHsl CKOPOCTH M TEMIIEPATYPH 10 Pamguycy TPyGHl If 4acTHOrO
claydan IMHENHON 3aBMCHMOCTH BABKOCTH 'KHIKOCTH OT TemmepaTyphl. CpaBHeHMe pe3yiib-
TAaTOB, MOJIYYEHHHX YUCICHHHM MHTETPMPOBAHMEM TOYHHIX ypaBHEHMUIt, ¥ JAHHBIX, HalfleH-
HEIX ¢ HOMOIUGI0 BAPMALMOHHOTO METOAA, IOKA3AJ0 XOpollee COOTBETCTBHE B JIMAINA30HE
U3MEHEeHUA BASKOCTHO-TEMIEPATYPHOro Kod(unuenTa.



