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Abstract-The recent work of I. Prigogine and P. Glansdorff has shown that a variational method 
can be applied to problems which cannot be described by self-adjoint differential equations. As an 
example of the use of this extended variational principle, the problem of slow viscous incompressible 
flow through a tube is considered. The wall of the tube is maintained at a uniform temperature, and the 
thermal conductivity of the fluid is assumed to be constant. The steady state temperature and velocity 
distributions are determined over the tube radius for the particular case where the fluid viscosity is 
linearly dependent upon the temperature. Comparisons between the results obtained through numerical 
integration of the exact equations and those obtained using the variational approach are favorable over 

a range of the viscosity-temperature coefficient. 

1. INTRODUCTION 

THE ExTENDED variational formulation I was 
recently applied to both Couette and Poiseuille 
flow by the author [l]. The particular investiga- 
tion was for the purpose of acquiring an under- 
standing of the accuracy, efficiency, and general 
applicability of the methods of Glansdorff et al. 
[2], to fluid flow problems exhibiting mechanical 
irreversibilities due to viscous forces. In order 
to achieve an exact solution as a basis for 
comparison for the variational solution, a 
simplified but unrealistic form was assumed for 
the temperature dependence of the viscosity and 
thermal conductivity. The present paper illus- 
trates more clearly the very general form which 
these terms may assume as a function of tempera- 
ture. 

For slow, viscous, incompressible flow, the 
variational form [2] to be set to zero is 

+ 2P6j6Vf - 2pwsvi 
I 

?l{ dJ2 = 0 
J 

where no conditions are imposed on the 
boundary surface S of the fluid volume V. 

In equation (l.l), the temperature T(xr) is 
subject to variation, but the temperature distri- 
bution T,(xi), which corresponds to the steady 
state, is not subject to variation. The viscosity 
pO and thermal conductivity k, are both func- 
tions of the steady state temperature distri- 
bution T,(xr). The remaining terms include the 
components of the fluid velocity t’t, the La- 
grangian multiplier h, the components of the 
stress tensor Pij, a potential w from which an 
external force is derived, the fluid density p, 
and ni, the unit normal to the boundary surface 
J-2. 

The formulation given by equation (1 .l) has 
been applied to the slow flow of an incom- 
pressible fluid through a tube where the viscosity 
of the fluid is a linear function of the tempera- 
ture. In this illustrative example, the thermal 
conductivity k is assumed to be constant. As in 
reference 1, comparatively simple forms are 
used to represent temperature and velocity 
distributions. Two numerical techniques are 
used to arrive at solutions from the variational 
formulation, and these results are compared with 
those obtained from the momentum and energy 
equations through numerical integration. 

2. NUMEXICAL SOLUTION 

The flow system is that of Poiseuille flow 
through a tube of radius R. Cylindrical co- 
ordinates are used, z being parallel to the tube 
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axis, r and 8 being the radial and angular be arbitrarily chosen. In this instance it was 
coordinates, The wail of the tube is at a constant chosen to be of the following form, 
temperature T,, and the fluid driving force is a 
pressure gradient along the axis of the tube. ox = I__!-. 8” 
Because of symmetry, T = T(r) and u = u(r) 2 (2.8) 

while p = p(z). The momentum and energy where 0, 
equations are respectively 

is the maximum dimensionless 
temperature which occurs at p = 0. By substi- 

dp 1 d du 
-=-- 
dZ rdr “dr’ i 1 

(2.1) 
tuting (2.8) into equations (2.6) and {2.7), they 
are then given by the forms 

(2.2) $+~~+2(2+a$?iZ,)) = oc2yj 

Et is assumed that the viscosity variation with 
temperature is linear and that the thermal dv YP --_- 
conductivity is constant. Thus 

=- 
dp 2 + cc{26 - 1 - I!?,). 

(2.10) 

p = p*[l -t /3(T - r*)], k = constant. (2.3) 

In equation (2.3), T* is a reference temperature 
which determines a viscosity CL* and /3 is the 
viscosity-temperature coefficient. It is convenient 
to introduce the following dimensionless 
quantities into the momentum and energy 
equations : 

a = T&Z, v = u 

(2.4) 

When these quantities are substituted into 
equation (2.1), and an integration is performed, 

p(1 +a@- e*&=yp’+cl 
dp 2 

, (2.5) 

The equations (2.9) and (2. lo), with the boundary 
conditions 

0(l) = 1, 0(O) = f&, v(1) = 0, (2.11) 

are solved for 8 and v through the use of a high 
speed digital computer. By assigning values for 
the fluid driving force y, the viscosity coefhcient 
a, and the maximum temperature Bnr, numerical 
integration of the two simultaneous differential 
equations (2.9) and (2.10) is accomplished using 
the Runga-Kutta-Gill technique. An iterative 
method is used, successive integrations being 
performed until the difference between the 
assigned value of 8, and the value obtained by 
integrating over p is less than some arbitrariIy 
small assigned quantity C. 

where 
3. VARIATIONAL FORMULATION: 

SELF-CONSISTENT METHOD 

A functional .I which reflects the conditions of 

and cr is a constant of integration. Since 
the variational form given by equation (1 .lf, 

dvJdp = 0 at p = 0, Cr = 0 and 
and which is applicable to the one dimensional 
flow system being investigated, is as follows: 

dv -- = 
dp 2(i + a; - 0;))’ 

In a similar manner, the energy equation (2.2) is 
reduced to the form 

dsB 1 d8 2 2 

G+--+ p dp 4(1 + ‘,; - @*) f = ‘* ‘2*7’ 
The relationships given by (2.3) and (2.4) allow 

The dimensionless reference temperature 8* may equation (3.1) to be written as 
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-+ 24p dp (3.2) 

where y is defined in (2.5). The boundary con- 
ditions on the temperature and velocity are 

8(l) = 1, Q(O) = 8,; 

V(1) = 0, V(0) = V1,1., (3.3) 

where em and vm are the maximum values of the 
temperature and veIocity. It should be noted 
that the temperature functions 0, in equation 
(3.2) which represent the stationary state are not 
to be varied but they must be the same function 
of p as the variable B which is to be varied. 

Elementary forms for functions of temperature 
and velocity which satisfy the conditions of 
(3.3) are 

B = (1 - /?*)A + 1, V = (1 - pa)& 

00 = (1 - p% f 1, (3.4) 

where 8% = A + 1 and Y= = 3. 
Because of the iltustrative nature of this 

example, only one arbitrary constant has been 
incorporated into the functions of (3.4), these 
being A and B. Additional constants would give 
a greater flexibility to the approximating 
functions, but at the cost of increasing the 
complexity of the algebra of the problem. The 
values of A and B which allow the best solution 
of the basic eauations by the forms of 0 and v 
given by (3.4j are determined 
lationships 

8J dJ 
--_ 52 = 0, aB 0. 

In the self-consistent method, following the 
operations of (3.5), 8, is set equal to 8, i.e. 
Ao = A. Thus, 

from the re- 

(3.5) 

Now setting 6, = 6, and using the relationships 
given by (2.8) and (3.4), the integration of 
equation (3.6) yields the following expression: 

2B2(1 - u) - fi (8A + &(A + 2) - 2B2) 

In s-1-, - &A = 0. (3.7) 
i 1 

In a similar manner, 

aJ 

ati=O= 
’ (1 f u(& - 0*)>0, S[ ---..__.o___ 

f3 
0 

After setting 8, = 0 and integrating, equation 
(3.8) reduces to the simple form, 

(3.9 

This direct proportionality of the maximum 
flow velocity to the fluid driving force, B = B(y), 
and its independence of viscosity and tempera- 
ture effects is a consequence of the assumed 
form for u(B, p) and the particular choice of the 
reference temperature T*. 

The substitution of (3.9) into (3.7) yields the 
following equation which must be solved for A, 

Y2(l -+64A-f 

ayZ(2 + A) 
-2.- ~- - +J] In (2-&j = 0. (3.10) 

The values of a and y are assigned and the value 
of A which satisfies (3.10) is then found through 
the use of an interval halving technique with a 
digital computer. With A and B known, equa- 
tions (3.4) are used to obtain the temperature 
and velocity distributions. 

4. VARIATIONAL FORMULATlON : 
ITERATION METHOD 

It is possible to solve for the coefficients in the 
variational formulation by using an iterative 
technique rather than the self-consistent method. 
The Newton-Baphson method [3] was found to 
be adequate for this analysis where the functional 
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J is a function of the three coefficients A, AO, 
and B. This method is applied to the current 
analysis in the following manner. 

As a consequence of the Ritz-Galerkin 
method, the two equations of (3.5) are estab- 
lished with the subsidiary conditions that at the 
steady state condition B(p) = e,(p). Thus, the 
following three equations are available : 

g = F(A,, A, B) = 0 1 
8J 
aj = G&,4 B) = 0 

t 

(4.1) 

H=A,-A=0 J 
These functions are expanded in a Taylor’s 
series and by retaining only the first-order terms, 
the following set of equations is obtained: 

FA~SA, = FASA + FsSB 
= -F(A,, A, B) 

GA,SA~ + GASA + G&B 
1 (4.2) 

= -G(Ao, A, B) I 

HA,~A, + HASA = -H(Ao, A) J 

where subscripts on F, G, and H denote differ- 
entiation. These equations are now solved for 
SAo, SA, and SB. 

With an initial estimate of Ao, A, and B, the 
change in these variables SA,,, SA, and SB, is 
then determined. Succeeding corrected values 
are obtained from the relationships 

A(,n+l) = A$0 + s/t,, 
1 

A0 11) = A(“) + a/t (4.3) 

Buli~l) = B(n) + 6B 

F. HAYS 

where 11 indicates the iteration number. This 
iteration process is continued until the difference 
between successive iterations is sufficiently small, 
i.e. until 6( ) < E. 

5. RESULTS 

Numerical solutions were obtained for the 
temperature and velocity distribution across the 
radius. The numerical solution of the exact 
equations (2.9) and (2.10) for the terms 8, - 1 
and vm, which correspond to the variables A and 
B, yielded values given in Table 1 over a range of 
a and y. 

For the self-consistent method, B is given 
directly by equation (3.9) and values of A which 
satisfy equation (3.10) over a range of a and y are 
given in Table 2. 

The Newton-Raphson iterative technique 
given by equations (3.3) and (3.4) yielded values 
of A and B, which differed by at most one figure 
in the fifth decimal place with the values obtained 
by the self-consistent method. 

Curves of temperature and velocity across the 
tube radius are shown in Fig. 1 and 2 for a 
constant value of y and for two values of a. 
It is seen from these curves that the difference 
between the results of the variational method 
and the exact equations increase with an increase 
in a. The discrepancy in the results can be 
attributed to the choice of the trial functions 
selected to represent the solutions of the differ- 
ential equations. A trial function with a greater 
number of coefficients would have a greater 
flexibility in approximating the true solutions, 
but at the expense of increased analytical com- 
plexity. This difference, however, is slight: the 
percentage error in I*,~ for a y of -3.0 and an 

Table 1. Values of B,,, - 1 and Y,,~ (cot,parable to A aud B of the variational method) obtaitred 01, the turmerical itrtegrutiotr 
of the momentunz and energ equations 

-1.0 0.015625 0.01566 0.01569 0.01575 0.2500 0.25033 0.25066 0.25133 
-2.0 0.062500 0.06300 0.06351 0.06460 1 0.5000 0.50267 0.50546 0.51149 
-3.0 0.140625 0.14320 
-4.0 0~250000 0.25841 

0.14600 0.15244 1 0.7500 0.75928 0.76963 0.79444 
O-26826 0.29492 l+OOO 1.02300 1.05116 1.13320 

- 5.0 0.390625 0.41210 044028 o.55305 I 1.2500 1.29760 1.36471 1.67670 

-__-.._~_~~~ --..-.-..-.- ~~. 
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Table 2. Values of A and 3 (comparable to BVn - 1 and v m of the exact equations) obtainedfrom the variational formuiu- 
tion using the se&consistent mqthod 

p~m~P--” 
‘I 

..___e~ 

A B 
____~ --~- 

h:’ * -0.5 -1.0 -2.o.t 0 -0.5 -1.0 -2.0 

-1.0 0.015625 001560 0.01559 0~01.555 0.250 0.250. 0250 O-250 
-2.0 0~062500 0.06218 O-06187 0.06125 ,0*500 OL500 0.500 0.500 
- 3.0 0.140625 0.13907 0.13754 0.13458 0.750 0.750 0,750 0.750 
-40 0*250000 0.24526 0.24069 0.23000 1.000 i*oOo 1.000 1GOO 
- 5.0 0.390626 0.37958 0.36910 0.34960 1 1.250 1.250 1,250 1.250 

__-..-_A P ~___~_ _. “7 -- -.-~.. .-. 

FIG. 1. Dimensionless temperature 6 and velocity v vs. 
tube radius p for both self-consistent method and 

numerical solution. a = -O+, Y = -3.0. 

a of -24 being 5.6% and for 8, the error is but 
1.5%. Thus, over a reasonable range of the 
forcing term y, the variational formulation yields 
quite acceptable results with a minimum number 
of coefficients. The results of the iteration 
technique have not been plotted since theymatch 
so closeIy the results of the self-consistent 
method. In applying the iterative method to the 
determination of the coefficients A and B, some 
care must be taken in choosing the initial values 
of these terms. If these values are too far removed 

H.M.-M 

from steady state values, then the iterative 
process may diverge. The range over which 
initial values of A and B will yield a converging 
process is a function of the derivatives JA and 
JR and is generahy not easily determined. 
Consequently, some time may be required in 
searching for acceptable trial values. However, 
once the converging iterative process was 
initiated, convergence was achieved in from four 
to sixteen iterations with an E of lo-“. 

XLF-CONSISTENT ---- 

NUMERICAL SOLUTION ___ 

FIG. 2. Dimensionless temperature 8 and velocity v vs. 

tube radius p for both self-consistent method and 
numerical solution. a = -2.0, Y = -3.0. 
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Of greater importance than the actual values 
obtained in this problem is the realization that 
the variational formulation furnishes a method 
by which temperature dependent viscosity and 
thermal conductivity can be incorporated easily 
into fluid flow analyses. The complexity of the 
temperature dependence of these functions does 
not limit the use of this technique nor does the 
complexity of the assumed temperature and 
velocity distributions act as restraints upon its 
applicability. With the availability of high-speed 
digital computers and a general theory relating 
to the determination of a stationary states 
through a variational principle [4], approximate 
solutions of sufficient accuracy may be obtained 
for many of the non-isothermal fluid mechanics 

F. HAYS 

problems which may include such phenomena as 
diffusion and chemical reactions. 
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Resume-Le travail recent de I. Prigogine et P. Glansdorff a montre qu’une methode variationnelle 
peut ttre appliqued aux problemes qui ne peuvent pas Ctre d&its par des equations differentielles 
auto-adjointes. Comme exemple de l’utilisation de ce principe variationnel generalist, le probleme d’un 
Ccoulement incompressible visqueux lent a travers un tubeest consider& La paroi du tubeest maintenue 
a une temerature uniforme, et I’on suppose que la conductivite thermique du fluide est constante. Les 
distributions de temperature et de vitesse en regime permanent sont dtterminees le long du rayon du 
tube dam le cas particulier oh la viscosite du fluide depend lineairement de la temperature. Des com- 
paraisons entre les resultats obtenus grace a l’integration numerique des equations exactes et ceux 
obtenus en utilisant la methode variationnelle sont favorables dans une certaine gamme du coefficient 

de dependance de la viscosite en fonction de la temperature. 

Zusammenfassung-Die jlingste Arbeit von J. Prigogine und P. Glansdorff hat gezeigt, dass eine 
Variationsmethode auf Probleme angewandt werden kann, die von selbst angleichenden Differential- 
gleichungen nicht beschrieben werden konnen. Als Anwendungsbeispiel flir dieses erweiterte 
Variationsprinzip wird das Problem der langsamen, z&hen, inkompressiblen Stromung durch ein 
Rohr betrachtet. Die Rohrwand wird auf gleichm&ssiger Temperatur gehalten und die Wlrmeleit- 
fahigkeit der Fltissigkeit wird als konstant angenommen. Die Beharrungstemperatur und die 
Geschwindigkeitsverteilungen wurden liber den Rohrradius fur den besonderen Fall bestimmt, dass 
die Zahigkeit linear abhangig von der Temperatur ist. Ein Vergleich der Ergebnisse, die durch 
numerische Integration der exakten Gleichungen erhalten wurden, mit den nach der Variations- 
nlherung errechneten ist vielversprechend tiber einen Bereich des Zlhigkeits-Temperatur- 

Koeffizienten. 

AtrnoTaqwsi-13 rrocJie~treP pa6oTe II. IIpnronurua II rr . Fnerrcfiop$a noI~a:~aHo, 11~0 ~aplla- 
1~14o~~bIfi Me~0fi MO~HO upiwetn4Tb li :raAaqaht, KOTOpMe HeJIb3fl OIIllCaTb C nOMOqbI0 CaMo- 

('OIIpRHEeHHbIX ,Q&i$@epeH~HaJIbHbIX ypaBHeHMti. 11 uasecrse rrpuuepa rrpn~teueurrn 3Toro 
0606UJeHHOI'O BapHaqHOHHOrO IIpHHsEina paCCMOTpeHa 3aAaqa 0 MeAJIeHHOM BWKOM IieCHFII- 

MaeMOM TeqeHIlH H(IIAKOCTH B Tpy6e. TeMnepaTypa CTeHKIl IIOAAep%lBaeTCH IIOCTOXHHO~i, 

TeIIJIOnpOBOAHOCTb WHAKOCTEI TaKH(e npHHHTa IlOCTORHHOft. B CTaWIOHapHOM COCTOaHHkl 

OnpeAeneHbI pacnpeAeneHwi CKO~OCTH II TeMIIepaTypn II0 paJWyCy TpY6bI AInn 4aCTHoro 
CJIysaR. JIHHefiHOft BaBMCMMOCTII BII3KOCTM ?KElAKOCTH OT TeMIfepaTypbI. CpaBHeHHe pe3yJIL- 

TaTOB, nOJlyYeHHMX 'IIICJIeHHbIM EiHTeF.pHpOBaHHeM TO'IHYX ypaBHeHfitl, II AaHHbIX, HafiAeH- 
HbIX C IIOMOmbI0 BapNaI&HOHHOrO MeTOga, noKaaan0 xoporuee CooTBeTcTBHe B AHanaaoHe 

II3MeHeHWi BfI3KOCTHO-TeMnepaTypHOrO KO3++UWeHTa. 


